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Outline and Motivation

• Introduction to Fermi Liquid Theory
• A Graphene Break
• Local Fermi Liquid
• A Microscopic Model for a Dirac Liquid
• Consequences for the Fermi Velocity and 

Collective Modes
• Summary and a Question, What if, 

𝑣"# = 𝑐?



Landau Fermi Liquid Theory

Landau’s “Aha!” Moment: For low T properties of “strongly interacting” Fermi gases/liquids,
e.g., cold atom (Fermi) gases, 3He, metals, and nuclear/neutron matter, are qualitatively 
the same as a free Fermi gas!

The Entropy density, S (or specific heat CV):

where,                                       and

€ 

S = γT

€ 

γ =
π 2

2
N(0)

€ 

χ =
N(0)
1+ F0

a ,

€ 

N(0) =
3n
2TF

For T << TF, the spin susceptibility and compressibility are independent of T, as in 
the free Fermi gas: 
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Lets look at the Energy and Density Range of 
Fermi Liquids 

• The Fermi liquids Landau’s “bold conjecture” covers a broad range 
of orders of magnitude for energy and density:

o Nuclear Matter: 

o 6Li – gas: 

There are 18 orders of magnitude in energy and 25 orders of 
magnitude in density!
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One-To-One Correspondence

2) Each energy level in the interacting system corresponds to 
one and only one energy level in the non-interacting system: 

and,          , is the quasiparticle  Hamiltonian. 

Basic assumption of LFLT is one-to one correspondence. 
Why? Think Entropy!
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1) The volume of the Fermi sphere is the same 
for the interacting and non-interacting system:
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Landau Fermi Liquid Theory Continued

with the interactions in a spin-rotation invariant system given by,

and the Landau parameters: 
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(Fluctuations of the density)

(Fluctuations of the magnetization 
density)

Fluctuations in the Energy Density: =  (E – E0)/V
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Quasi-Classical (q<<pF and ω<<εF) 
Kinetic Equation:

Dynamics and Transport

• The quasiparticle Hamiltonian,             , generates the quasi-
classical equations of motion from using the Poisson Bracket, 
e.g.,  

• where,

• Conservation laws follow from this equation, e.g. conservation 
of number density, n(r,t).
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Linearized Quasi-Classical (q<<pF and ω<<εF)
Kinetic Equation

For small fluctuations in the quasi-particle distribution function,           , 
we have:  

Where, 
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Equations of Motion From the Kinetic 
Equation

The continuity equation (number is conserved):

The equation of motion for the current (momentum is 
conserved): (T = 0)
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“Hydrodynamic” Equation, T ≠ 0,
Dynamics and Transport

For small fluctuations in the mass density,
we have:

Where, ,

and,

In a 3D Fermi liquid the transport lifetimes and the quasi-particle
lifetime have similar temperature dependence:
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Spin Density and Current Equations of Motion

Spin density continuity equation (for B = 0):

Spin current equation, for paramagnetic Fermi liquid (B     0) :

where, for a paramagnetic Fermi liquid we have,                  , and

∂
∂t
jσ ,i (r,t)+ cs

2 ∂
∂xi
m(r,t) = −(2 / !)

N (0)
(F0

a − F1
a / 3) jσ ,i (r,t)×m0

cs
2 =
vF
2

3
(1+ F0

a )(1+
F1
a

3
)

∂
∂t
m(r,t)+ ∂

∂xi
jσ ,i (r,t) = 0

€ 

m0 = χB€ 

≠



• The dispersion is linear for some range in k-
space:

• Near K, K’

Is Graphene an  “Ultra-Relativistic” Metal?

a

a

1

2

b

b

1

2

K
Γ

k

k

x

y

1

2

3

M

δ δ

δ

A B

K’

a1

a2 δi i = 1, 2, 3

K K′ k = K+q
|q| ≪ |K|

E±(q) ≈ ±vF |q| + O((q/K)2) ,

q
vF

vF = 3ta/2 vF ≃ 1 × 106

ϵ(q) = q2/(2m) m

v = k/m =
√

2E/m

t′

q/K

E±(q) ≃ 3t′±vF |q|−
(

9t′a2

4
±

3ta2

8
sin(3θq)

)

|q|2 ,

θq = arctan

(

qx

qy

)

,

t′

(q/K)2

t t t′ t = t′ = 0.2t

m∗ =
1

2π

[

∂A(E)

∂E

]

E=EF

,

A(E) k−

A(E) = πq(E)2 = π
E2

v2
F

.

m∗ =
EF

v2
F

=
kF

vF
.

n
kF k2

F /π = n
K K ′

m∗ =

√
π

vF

√
n .

vF ≈ 106 −1 t ≈ 3

√
n

t′ = 0 t′ ≠ 0
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Virial Theorem for Ultra-Relativistic Dirac Materials
Stokes, et al.  Phil. Mag. Letters, 93, 672 (2013)

The Virial:



Adding this all together:

Recall:



Results for Chemical Potential and the Sound Velocity
from the Virial Theorem
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Martin,
Nat. Phys.
4, 144
(2008)



Local Fermi Liquid for 3D Dirac 
Metals

Self Energy is momentum independent; (LFL) Theory, E&B, PRL ’95 (Connection 
to DMFT). 

Local Landau interactions:
𝒇𝒑𝒑6𝝈𝝈6 = 𝒇𝟎𝒔 + 𝛔 < 𝝈6𝒇𝟎𝒂

Local scattering amplitudes:

𝑨𝟎
𝒔,𝒂 = N(0) 𝒂𝟎

𝒔,𝒂 =
𝑭𝟎
𝒔,𝒂

𝟏+𝑭𝟎
𝒔,𝒂 , Pauli: 𝑨𝟎↑↑ = 𝑨𝟎𝒔 + 𝑨𝟎𝒂 = 0

𝑫𝒆𝒏𝒔𝒊𝒕𝒚 𝒐𝒇 𝑺𝒕𝒂𝒕𝒆, 𝑵 𝟎 =
𝒑𝑭𝟐

𝝅𝟐 ℏ𝟑 𝒗𝑫

Only 2 parameters, the Dirac velocity, 𝑣"# , and 𝒇𝟎𝒔 .

For Local Lorentz invariant systems, 𝒇𝒍
𝒔,𝒂 = 𝟎, 𝐟𝐨𝐫 𝐥 ≥ 𝟏,  only 1 

parameter to fit. This is a long way from  ∞ ! 

𝜮 (p, 𝜺) ≡ 𝜮 (𝜺)



Induced Interactions for a Local Dirac Fermi 
Liquid

The Legendre polynomial moments, 𝒅𝒍,  of the effective potential, 
d(𝒑𝟏,𝒑𝟐:𝒑𝟑, 𝒑𝟒 ), for the ultra-relativistic electron gas,  are  all 0, with the 
exception of 𝒅𝟎.*  Including the spin dependence,

𝒅𝟎𝝈𝝈” = 𝒅𝟎𝒔 + 𝒅𝟎𝒔 𝝈 < 𝝈′

* G. Baym and S. Chin, Nuclear Physics 1976



Some consequences of the Local Dirac Liquid

Nature Phys. Lett
D. Elias, et al. 2011.

Are Dirac Cones Reshaped by Interactions?

If the Dirac liquid is local this would lead to 
a constraint on the ratio, 

𝒗𝒇𝟎

𝒗𝑭
= 𝟏 + `𝑭𝟏𝒔

𝟑
For 𝐹'b = 0, there would be no change in 
the Fermi velocity as a function of doping.

The outer part of the cone is the zero 
doping case and the inner one is the 
doped velocity.



Consequences Continued
• First sound changes,

𝒄𝟏𝟐= 𝟏
𝟐
(𝒗𝒇𝟎)𝟐(𝟏 + 𝑭𝟎𝒔 )

• Plasmon frequency changes,

𝝎𝒑𝒍
𝟐 = 𝟒𝝅𝒆𝟐 𝒏

𝒎
~ 𝒏,  classical.

𝝎𝒑𝒍
𝟐 = 𝟒𝝅𝒆𝟐 𝒏

𝒑𝑭
𝒗𝒇𝟎 ~ 𝒏𝟐/𝟑 , ultra-relativistic 



Summary and future Directions

• More calculations from the Fermi/Dirac 
Liquid. Response functions, transport, spin 
waves, etc.

• What if 𝑣"# = c (the speed of light)?
• There would be bounds on the Fermi velocity,
𝑣𝐹 , speed of sound, and zero sound would be 

bounded by c, putting restrictions on the Fermi 
liquid parameters.


