Dynamic Dirac QM Jacksonville, Fl. 16 Dec 2019

youtube: Piers Coleman

Piers Coleman

Center for Materials Theory, Rutgers U, USA Hubbard Theory Consortium, Royal Holloway, U. London

Dynamic Dirac QM Jacksonville, Fl. 16 Dec 2019

youtube: Piers Coleman

Piers Coleman

Center for Materials Theory, Rutgers U, USA Hubbard Theory Consortium, Royal Holloway, U. London

Yashar Komijani (Rutgers), Anna Toth (Edinburgh), Premi Chandra (Rutgers) Ari Wugalter (Rutgers)

arXiv:1811.11115 Y. Komijani, A. Toth, P. Chandra and PC arXiv:1911.13129 A. Wugalter, Y. Komijani, PC

Dynamic Dirac QM Jacksonville, Fl. 16 Dec 2019

arXiv:1811.11115 Y. Komijani, A. Toth, P. Chandra and PC arXiv:1911.13129 A. Wugalter, Y. Komijani, PC

- Fractionalization as Dynamical Order
- Motivation from Experiment
- Induced OFr
- Spontaneous OFr

arXiv:1811.11115 Y. Komijani, A. Toth, P. Chandra and PC arXiv:1911.13129 A. Wugalter, Y. Komijani, PC

Fractionalization as Dynamic Order

• Static property.

• Static property.

Electronic Matter: OPs = pairs of fermions

$$\Psi = \langle \hat{\psi}_{\uparrow} \hat{\psi}_{\downarrow} \rangle \qquad \vec{M} = \langle \psi^{\dagger} \vec{\sigma} \psi \rangle$$

BCS

Stoner Hartree Fock

- Static property.
- Half integer OPS are impossible.
 Electronic Matter:
 OPs = pairs of fermions

$$\Psi = \langle \hat{\psi}_{\uparrow} \hat{\psi}_{\downarrow} \rangle \qquad \vec{M} = \langle \psi^{\dagger} \vec{\sigma} \psi \rangle$$

BCS

Stoner Hartree Fock

- Static property.
- Half integer OPS are impossible.

- Static property.
- Half integer OPS are impossible.

Fractionalization:

e.g. Magnons fractionalize into Spinons

- Static property.
- Half integer OPS are impossible.

Fractionalization:

e.g. Magnons fractionalize into Spinons

S=1/2 Heisenberg Chain,

$$\vec{S} \to f_{\alpha}^{\dagger} f_{\beta}$$

Spinons: Mourigal et al, Nat Phys (2013)

- Static property.
- Half integer OPS are impossible.

- Static property.
- Half integer OPS are impossible.

Fractionalization:

e.g. Magnons fractionalize into Spinons

S=1/2 Heisenberg Chain,

$$\vec{S} \to f_{\alpha}^{\dagger} f_{\beta}$$

- excited state property
- Dynamic Property

Fractionalization:

e.g. Magnons fractionalize into Spinons

S=1/2 Heisenberg Chain,

$$\vec{S} \to f_{\alpha}^{\dagger} f_{\beta}$$

- excited state property
- Dynamic Property

Spinons: Mourigal et al, Nat Phys (2013)

Fractionalization:

S=1/2 Heisenberg Chain,

- excited state property
- Dynamic Property

Spinons: Mouridal et al. Nat Phys

Fractionalization:

S=1/2 Heisenberg Chain,

Kitaev Honeycomb

- excited state property
- Dynamic Property

Kitaev, Ann Phys (2006)

Spinons: Mouridal et al. Nat Phys

Fractionalization:

Spins fractionalize into Majorana Fermions

S=1/2 Heisenberg Chain,

Kitaev Honeycomb

- $\vec{S} \rightarrow i \eta_0 \vec{\eta}$
- *excited* state property
- Dynamic Property

Kitaev, Ann Phys (2006)

Spinons: Mouriaal et al. Nat Phys

Fractionalization:

Spins fractionalize into Majorana Fermions

S=1/2 Heisenberg Chain,

Kitaev Honeycomb

- $\vec{S} \to i\eta_0 \vec{\eta}$
- excited state property
- Dynamic Property

Kamahara et al, Nature **559**, 227–231 (2018)

$$\kappa_{xy}^{2\mathrm{D}}/T = q(\pi/6)(k_{\mathrm{B}}^2/\hbar)$$

Kitaev, Ann Phys (2006)

Spinons: Mouriaal et al. Nat Phys

Fractionalization:

Spins fractionalize into Majorana Fermions

S=1/2 Heisenberg Chain,

Kitaev Honeycomb

- $\vec{S} \to i\eta_0 \vec{\eta}$
- excited state property
- Dynamic Property

Kamahara et al, Nature **559**, 227–231 (2018)

$$\kappa_{xy}^{2\mathrm{D}}/T = q(\pi/6)(k_{\mathrm{B}}^2/\hbar)$$

Fractionalization:

Spins fractionalize into Majorana Fermions

S=1/2 Heisenberg Chain,

Kitaev Honeycomb

$$\vec{S} \rightarrow i\eta_0 \vec{\eta}$$

- *excited* state property
- Dynamic Property

Fractionalization:

S=1/2 Heisenberg Chain, **Kitaev Honeycomb**

- excited state property
- Dynamic Property

Fractionalization:

S=1/2 Heisenberg Chain,

Kitaev Honeycomb

Deconfined Criticality

- excited state property
- Dynamic Property

Fractionalization:

Many patterns of fractionalization are possible

S=1/2 Heisenberg Chain,

Kitaev Honeycomb

Deconfined Criticality

- excited state property
- Dynamic Property

Fractionalization:

Many patterns of fractionalization are possible

S=1/2 Heisenberg Chain,

Kitaev Honeycomb

Deconfined Criticality

- *excited* state property
- Dynamic Property

Fractionalization:

Many patterns of fractionalization are possible

S=1/2 Heisenberg Chain,

Kitaev Honeycomb

Deconfined Criticality

- *excited* state property
- Dynamic Property

Conjecture:

Order can fractionalize

Fractionalization:

Many patterns of fractionalization are possible

S=1/2 Heisenberg Chain,

Kitaev Honeycomb

Deconfined Criticality

- *excited* state property
- Dynamic Property

Conjecture:

Order can fractionalize

Onset at Deconfined QCP

Fractionalization:

Many patterns of fractionalization are possible

S=1/2 Heisenberg Chain,

Kitaev Honeycomb

Deconfined Criticality

- *excited* state property
- Dynamic Property

Conjecture:

Order can fractionalize

- Onset at Deconfined QCP
- ODRLO into the time domain

Fractionalization:

Many patterns of fractionalization are possible

S=1/2 Heisenberg Chain,

Kitaev Honeycomb

Deconfined Criticality

- *excited* state property
- Dynamic Property

Conjecture:

Order can fractionalize

- Onset at Deconfined QCP
- ODRLO into the time domain
- Half integer OPS are possible.

Various Motivations

Motivation: Kondo Lattice Physics

$$H = -t \sum_{(i,j)\sigma} (c^{\dagger}_{i\sigma}c_{j\sigma} + \text{H.c}) + J \sum_{j,\alpha\beta} \vec{\sigma}_{j} \cdot \vec{S}_{j},$$

"Platonic" Kondo (Andy Millis)

Motivation: Kondo Lattice Physics

 $H = -t \sum_{(i,j)\sigma} (c^{\dagger}_{i\sigma}c_{j\sigma} + \text{H.c}) + J \sum_{j,\alpha\beta} \vec{\sigma}_{j} \cdot \vec{S}_{j},$

"Platonic" Kondo (Andy Millis)

"Many body ionization"

Motivation: Kondo Lattice Physics

 $H = -t \sum_{(i,j)\sigma} (c^{\dagger}_{i\sigma}c_{j\sigma} + \text{H.c}) + J \sum_{j,\alpha\beta} \vec{\sigma}_j \cdot \vec{S}_j,$

"Platonic" Kondo (Andy Millis)

"Many body ionization"

$$H = -t \sum_{(i,j)\sigma} (c^{\dagger}_{i\sigma}c_{j\sigma} + \text{H.c}) + J \sum_{j,\alpha\beta} \vec{\sigma}_{j} \cdot \vec{S}_{j},$$

"Platonic" Kondo (Andy Millis)

$$H = -t \sum_{(i,j)\sigma} (c^{\dagger}_{i\sigma}c_{j\sigma} + \text{H.c}) + J \sum_{j,\alpha\beta} \vec{\sigma}_{j} \cdot \vec{S}_{j},$$

"Platonic" Kondo (Andy Millis)

$$H = -t \sum_{(i,j)\sigma} (c^{\dagger}_{i\sigma} c_{j\sigma} + \text{H.c}) + J \sum_{j,\alpha\beta} \vec{\sigma}_j \cdot \vec{S}_j,$$

"Platonic" Kondo (Andy Millis)

The anthropic view is that the f-electron is the renormalized quasiparticle of an underlying Anderson model.

 $H = -t \sum_{(i,j)\sigma} (c^{\dagger}_{i\sigma}c_{j\sigma} + \text{H.c}) + J \sum_{j,\alpha\beta} \vec{\sigma}_{j} \cdot \vec{S}_{j},$

"Platonic" Kondo (Andy Millis)

The anthropic view is that the f-electron is the renormalized quasiparticle of an underlying Anderson model.

But the spin in the Kondo model has no knowledge of its electronic origins (it could be nuclear!) The f-electron is an emergent fractionalization of the spin, as a charged Dirac particle.

 $H = -t \sum_{(i,j)\sigma} (c^{\dagger}_{i\sigma}c_{j\sigma} + \text{H.c}) + J \sum_{j,\alpha\beta} \vec{\sigma}_j \cdot \vec{S}_j,$

"Platonic" Kondo (Andy Millis)

The anthropic view is that the f-electron is the renormalized quasiparticle of an underlying Anderson model.

But the spin in the Kondo model has no knowledge of its electronic origins (it could be nuclear!) The f-electron is an emergent fractionalization of the spin, as a charged Dirac particle.

 $H = -t \sum_{(i,j)\sigma} (c^{\dagger}_{i\sigma}c_{j\sigma} + \text{H.c}) + J \sum_{j,\alpha\beta} \vec{\sigma}_{j} \cdot \vec{S}_{j},$

"Platonic" Kondo (Andy Millis)

But the spin in the Kondo model has no knowledge of its electronic origins (it could be nuclear!) The f-electron is an emergent fractionalization of the spin, as a charged Dirac particle.

 $H = -t \sum_{(i,j)\sigma} (c^{\dagger}_{i\sigma}c_{j\sigma} + \text{H.c}) + J \sum_{j,\alpha\beta} \vec{\sigma}_{j} \cdot \vec{S}_{j},$

"Platonic" Kondo (Andy Millis)

But the spin in the Kondo model has no knowledge of its electronic origins (it could be nuclear!) The f-electron is an emergent fractionalization of the spin, as a charged Dirac particle.

Pressure driven Fractionalization

But viewed from the perspective of the Kondo model, the f-electron is an emergent fractionalization of the spin, as a charged Dirac particle.

Large FS $\Delta v_{FS} \sim 2S \mod 2$ Oshikawa 2000 Fractionalized spins

Pressure driven Fractionalization

But viewed from the perspective of the Kondo model, the f-electron is an emergent fractionalization of the spin, as a charged Dirac particle.

Pressure driven Fractionalization

But viewed from the perspective of the Kondo model, the f-electron is an emergent fractionalization of the spin, as a charged Dirac particle.

 $\vec{S} \to f_{\alpha}^{\dagger} f_{\beta}$ Spin Fractionalization

What other kinds of fractionalization are possible?

Integer (J=4) spin fractionalizes into Ising Quasiparticles.

$$\Psi = \begin{pmatrix} \Psi_{\uparrow} \\ \Psi_{\downarrow} \end{pmatrix}$$

P.Chandra et al, Nature, 493, 621-626 (2013).

URu₂Si₂ Hastatic order?

URu₂Si₂ Hastatic order?

URu₂Si₂ Hastatic order?

Here, spin fractionalization appears to coincide with a phase transition.

URu₂Si₂ Hastatic order?

Here, spin fractionalization appears to coincide with a phase transition.

Kondo effect and SC coincide.

URu₂Si₂ Hastatic order?

Here, spin fractionalization appears to coincide with a phase transition.

Conjecture:

Order can fractionalize

Conjecture:

Order can fractionalize

But how can we demonstrate this?

Dyson self-energy

Conventional Broken Symmetry: Local

$$\Sigma_{\alpha\beta}(2,1) = M_{\alpha\beta}\delta(2-1)$$

Conventional Broken Symmetry: Local

$$\Sigma_{\alpha\beta}(2,1) = M_{\alpha\beta}\delta(2-1)$$

Order Fractionalization: non-local in time.

Order fractionalization, if it occurs, is linked to the formation of fermionic bound-states

"Dark Fermions"

Sakai, Civelli and Imada PRL 116, 057003 (2016) Konik, Rice, Tsvelik (2006)

Order fractionalization, if it occurs, is linked to the formation of fermionic bound-states

"Dark Fermions"

Sakai, Civelli and Imada PRL 116, 057003 (2016) Konik, Rice, Tsvelik (2006)

$$(\psi\psi\psi)_{\Lambda}(x)$$

$$\begin{pmatrix} \nabla \nabla \\ \psi \psi \psi \end{pmatrix}_{\Lambda}(x)$$

$$\Lambda = \left(\{\lambda\}, \{\alpha\} \} \right)$$

$$\begin{split} (\bar{\psi}\psi\psi)_{\Lambda}(x) &= V_{\alpha\alpha'}^{\lambda}(x)f_{\alpha'}(x)\\ \Lambda &= \Bigl(\{\lambda\},\{\alpha\}\Bigr) \end{split}$$

Order fractionalization, if it occurs, is linked to the formation of fermionic bound-states

$$\begin{aligned} \left(\psi \psi \psi \right)_{\Lambda}(x) &= V_{\alpha \alpha'}^{\lambda}(x) f_{\alpha'}(x) \end{aligned} \\ \Lambda &= \left(\{\lambda\}, \{\alpha\} \right) \end{aligned}$$

Bound state fractionalizes into order parameter and dark fermion

Weiss Molecular Field

$$\begin{split} \left(\psi \psi \psi \right)_{\Lambda}(x) &= V_{\alpha \alpha'}^{\lambda}(x) f_{\alpha'}(x) \\ \Lambda &= \left(\{\lambda\}, \{\alpha\} \right) \end{split}$$

Weiss Molecular Field

Weiss Molecular Field

Spontaneous Broken Symmetry

Pre-requisite:

Pre-requisite:

• Find an impurity model where we can *induce* Order Fractionalization with an external field.

Kondo Model: ideal setting

$$H = \sum_{\mathbf{k}\sigma} \epsilon_{\mathbf{k}} c_{\mathbf{k}\sigma}^{\dagger} c_{\mathbf{k}\sigma} + J \psi_{0}^{\dagger} \vec{\sigma} \psi_{0} \cdot \vec{S}_{0}$$

Pre-requisite:

 Find an impurity model where we can induce Order Fractionalization with an external field.

Fractionalization in the Kondo effect

But large N assumes fractionalization, Does it happen at S=1/2?

But large N assumes fractionalization, Does it happen at S=1/2? <u>Confirmed.</u>

$$\mathcal{F}_{\alpha} = J(\vec{\sigma} \cdot \vec{S}_0) \psi_{0\alpha} \to V f_{\alpha}(0)$$

But large N assumes fractionalization, Does it happen at S=1/2? <u>Confirmed.</u>

$$\mathcal{F}_{\alpha} = J(\vec{\sigma} \cdot \vec{S}_0) \psi_{0\alpha} \to V f_{\alpha}(0)$$

But large N assumes fractionalization, Does it happen at S=1/2? <u>Confirmed.</u>

$$\mathcal{F}_{\alpha} = J(\vec{\sigma} \cdot \vec{S}_0) \psi_{0\alpha} \to V f_{\alpha}(0)$$

$$H = \sum_{\mathbf{k}\sigma} \epsilon_{\mathbf{k}} c_{\mathbf{k}\sigma}^{\dagger} c_{\mathbf{k}\sigma} + V(\psi_{\sigma}^{\dagger} f_{\sigma} + \text{H.c})$$

The hybridization is a Higgs field for the spinon which pins its internal U(1) gauge field to the external EM field, giving the felectrons physical charge.

But large N assumes fractionalization, Does it happen at S=1/2? <u>Confirmed.</u>

$$\mathcal{F}_{\alpha} = J(\vec{\sigma} \cdot \vec{S}_0) \psi_{0\alpha} \to V f_{\alpha}(0)$$

$$H = \sum_{\vec{k}\sigma\lambda} \epsilon_{\vec{k}} c^{\dagger}_{\vec{k}\lambda\sigma} c_{\vec{k}\ \sigma} + J \sum_{\lambda=1,2} \vec{\sigma}_{\lambda}(0) \cdot \vec{S}$$

 $H = \sum_{\vec{k}\sigma\lambda} \epsilon_{\vec{k}} c^{\dagger}_{\vec{k}\lambda\sigma} c_{\vec{k}\ \sigma} + J \sum_{\lambda=1,2} \vec{\sigma}_{\lambda}(0) \cdot \vec{S} + \frac{\delta J}{\delta} [\vec{\sigma}_{1}(0) - \vec{\sigma}_{2}(0)] \cdot \vec{S}$

Spontaneous Order Fractionalization

Order Fractionalization (Spontaneous)

Order Fractionalization (Spontaneous)

2-channel Kondo Lattice

Order Fractionalization (Spontaneous)

2-channel Kondo Lattice
Order Fractionalization (Spontaneous)

P. Chandra, P. Coleman, Y. Komijani

Composite order Fractionalized

$$\Psi = \langle \left(\psi_1^{\dagger} \vec{\sigma} \psi_1 - \psi_2^{\dagger} \vec{\sigma} \psi_2 \right) \cdot \vec{S} \rangle$$
$$\propto |V_1|^2 - |V_2|^2$$

cf Emery and Kivelson 1993

 $\Sigma_{\lambda\lambda'}(2,1) \xrightarrow{|2-1| \to \infty} V_{\lambda}(2) V_{\lambda'}(1) g(2-1)$

ODLRO in Space Time

P. Chandra, P. Coleman, Y. Komijani

Composite order Fractionalized

$$\Psi = \langle \left(\psi_1^{\dagger} \vec{\sigma} \psi_1 - \psi_2^{\dagger} \vec{\sigma} \psi_2 \right) \cdot \vec{S} \rangle$$
$$\propto |V_1|^2 - |V_2|^2$$

cf Emery and Kivelson 1993

Hoshino, Otsuki & Kuromoto, PRL 107, 247202 (2011)

ODLRO in Space Time

P. Chandra, P. Coleman, Y. Komijani

Composite order Fractionalized

$$\Psi = \langle \left(\psi_1^{\dagger} \vec{\sigma} \psi_1 - \psi_2^{\dagger} \vec{\sigma} \psi_2 \right) \cdot \vec{S} \rangle$$
$$\propto |V_1|^2 - |V_2|^2$$

cf Emery and Kivelson 1993

Hoshino, Otsuki & Kuromoto, PRL 107, 247202 (2011)

$$(\overline{\psi}\psi)_{\Lambda}(x) = V_{\alpha\alpha'}^{\lambda}(x)f_{\alpha'}(x)$$

$$\Sigma_{\lambda\lambda'}(2,1) \xrightarrow{|2-1| \to \infty} V_{\lambda}(2)V_{\lambda'}(1)g(2-1)$$

ODLRO in Space Time

P. Chandra, PC, Y. Komijani, A. Toth

Composite Order

See: Flint, Dzero, PC, Nat Phys. (2008)

See: Flint, Dzero, PC, Nat Phys. (2008)

Composite order $\langle (\psi_1 \vec{\sigma} \sigma_2 \psi_2) \cdot \vec{S} \rangle \propto (V_1 \Delta_2 - V_2 \Delta_1)$

See: Flint, Dzero, PC, Nat Phys. (2008)

Composite order $\langle (\psi_1 \vec{\sigma} \sigma_2 \psi_2) \cdot \vec{S} \rangle \propto (V_1 \Delta_2 - V_2 \Delta_1)$

See: Flint, Dzero, PC, Nat Phys. (2008)

A. Sakai, K. Kuga, and S. Nakatsuji, J. Phys. Soc. Jpn. 81, 083702 (2012).

Order Parameter Fractionalization Hypothesis $(\psi \psi \psi)_{\Lambda}(x) = V_{\alpha \alpha'}^{\lambda}(x) f_{\alpha'}(x)$ P. Chandra, PC, Y. Komijani **Composite Order** $\langle \psi^{\dagger}(\vec{\sigma}\cdot\vec{S})\psi\rangle\propto |V|^2$ $V f_{\alpha}$ HF Kondo $(\vec{S}\cdot\vec{\sigma})_{\alpha\beta}\psi_{\beta}$ $(\vec{\sigma}\cdot\vec{\eta})_{\alpha\beta}\mathcal{V}_{\beta}$ Odd-w triplet/ $\langle \psi_{\uparrow}\psi_{\downarrow}\vec{S} angle \propto \mathcal{V}^{T}\vec{\sigma}\sigma_{2}\mathcal{V}$ Majorana Skyrme Insulator Composite 2-channel $\langle \left(\psi_1^{\dagger} \vec{\sigma} \psi_1 - \psi_2^{\dagger} \vec{\sigma} \psi_2\right) \cdot \vec{S} \rangle$ $V_{\lambda}f_{\alpha}$ Multipole $(\vec{S} \cdot \vec{\sigma})_{\alpha\beta} \psi_{\lambda\beta} | V_{\lambda} f_{\alpha} + \Delta_{\lambda} \bar{\alpha} f_{-\alpha}^{\dagger} |$ Composite $\langle (\psi_1 \vec{\sigma} \sigma_2 \psi_2) \cdot \vec{S} \rangle$ Pair $\Psi_{\alpha}\hat{\chi}_{\lambda}$ $\langle c^{\dagger}\vec{\sigma}(\vec{I}\cdot\vec{\tau})c\rangle \propto \Psi^{\dagger}\vec{\sigma}\Psi$ Hastatic 1/T 200 В SmB₆ Α SmB_6 Quantum oscillation frequency (T) $\log_{\phi} \left[\Omega \mathrm{cm} \right]$ 10 10-3 10 30 60 90 100 300 350 0 т

Tan et al. Science 349, 287 (2015)

[001]

[111]

[110]

Tan et al. Science 349, 287 (2015)

Ran et al, arXiv 1811.11808

UTe₂

Ran et al, arXiv 1811.11808

UTe₂

"Half gapped superconductivity"

Ran et al, arXiv 1811.11808

UTe₂

"Half gapped superconductivity" 0.3 (**c**) Hlla ●— 0 T ▲— 7 T C_e/T (J/mol-K²) 1.0 $\sim T^{3.2}$ γ_n $\frac{\gamma_n}{2}$ 0_ 0.5 1.0 1.5 2.0 *T* (K) 6 (a) Gapless Energy Majorana band Miranda et al '92 Baskaran '15 Erten et al '17 -6 k (0, 0, 0)(π, π,

;

"Half gapped superconductivity"

Ran et al, arXiv 1811.11808

UTe₂

$$\Delta \propto \mathcal{P} \sim \frac{\mathcal{V} \otimes \mathcal{V}^{\dagger}}{\omega}$$

Ran et al, arXiv 1811.11808

UTe₂

$$\Delta \propto \mathcal{P} \sim \frac{\mathcal{V} \otimes \mathcal{V}^{\dagger}}{\omega}$$

Projective nature of SC suggests fractionalized order

"Half gapped superconductivity"

Higgs = an isospin 1/2 spinor

Higgs = an isospin 1/2 spinor

Not thought to be a fundamental particle, yet it has a half integer quantum number and so can not form from two fundamental fermions.

Higgs = an isospin 1/2 spinor

Not thought to be a fundamental particle, yet it has a half integer quantum number and so can not form from two fundamental fermions.

Order fractionalization of three fermions?

• Kondo effect is a hitherto unrecognized form of *spin fractionalization.*

- Kondo effect is a hitherto unrecognized form of *spin fractionalization.*
- Other forms of spin fractionalization are possible (cf Kitaev)

Majorana Fractionalization ?

- Kondo effect is a hitherto unrecognized form of *spin fractionalization.*
- Other forms of spin fractionalization are possible (cf Kitaev)
- Simultaneous development of Kondo and Order suggests order Fractionalization

Majorana Fractionalization ?

- Kondo effect is a hitherto unrecognized form of *spin fractionalization.*
- Other forms of spin fractionalization are possible (cf Kitaev)
- Simultaneous development of Kondo and Order suggests order Fractionalization
- Order fractionalization can be induced in the two channel Kondo model

Majorana Fractionalization ?

- Kondo effect is a hitherto unrecognized form of *spin fractionalization.*
- Other forms of spin fractionalization are possible (cf Kitaev)
- Simultaneous development of Kondo and Order suggests order Fractionalization
- Order fractionalization can be induced in the two channel Kondo model
- Order fractionalization conjecture

$$(\overline{\psi}\overline{\psi}\psi)_{\Lambda}(x) = V_{\alpha\alpha'}^{\lambda}(x)f_{\alpha'}(x)$$

$$\Sigma_{\lambda\lambda'}(2,1) \xrightarrow{|2-1| \to \infty} V_{\lambda}(2)V_{\lambda'}(1)g(2-1)$$

ODLRO in Space Time

Thank You!