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Topological boundary
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Dirac Hamiltonian
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Floquet Theory
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Floquet engineering of Dirac cones on the surface of a topological insulator
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We propose to Floquet engineer Dirac cones at the surface of a three-dimensional topological insulator. We
show that a large tunability of the Fermi velocity can be achieved as a function of the polarization, direction,
and amplitude of the driving field. Using this external control, the Dirac cones in the quasienergy spectrum
may become elliptic or massive, in accordance with experimental evidence. These results help us to understand
the interplay of surface states and external ac driving fields in topological insulators. In our work we use the
full Hamiltonian for the three-dimensional system instead of effective surface Hamiltonians, which are usually
considered in the literature. Our findings show that the Dirac cones in the quasienergy spectrum remain robust
even in the presence of bulk states, and therefore, they validate the usage of effective surface Hamiltonians to
explore the properties of Floquet-driven topological boundaries. Furthermore, our model allows us to introduce
out-of-plane field configurations which cannot be accounted for by effective surface Hamiltonians.

DOI: 10.1103/PhysRevB.100.075412

I. INTRODUCTION

During the last two decades, new Dirac materials such as
topological insulators, graphene, and other carbon-based ma-
terials have emerged. These are foreseen to surpass the reach
of semiconductors. Apart from their robustness to defects,
stemming either from topological protection or symmetry,
their linear dispersion is very much like that of photons,
except for their quantum statistics and their much lower
velocities. Different mechanisms have been put forward to
modify the properties of these cones. For instance, breaking
time-reversal symmetry in graphene leads to the quantum
anomalous Hall effect, a system introduced by Haldane [1]
in the 1980s and experimentally realized very recently using
ultracold atoms [2]. In this case, band gaps open up in
the otherwise gapless spectrum. and the system becomes a
topological insulator that can host chiral edge states. Other
alternatives put their emphasis towards modifying the Fermi
velocity [3–8], a crucial parameter in quantum transport [9].
As an example, applying static, uniform electric, and mag-
netic fields to three-dimensional topological insulators such as
Bi2Se3 widens the cone elliptically, so that the Fermi velocity
is reduced in an anisotropic fashion [10–13].

Remarkably, however, the use of periodic drivings is dra-
matically expanding the possibilities in these Dirac materials.
Indeed, examples are now found not only in solid-state sys-
tems [14] but also in photonics [15] or even acoustics [16].
All these make use of what is known as Floquet’s theorem.
Although the words are now mainstream in the scientific
community, Floquet’s theorem is most well known in its real-
space version, that is, Bloch’s theorem. Indeed, the discrete
periodicity of a lattice in real space leads to the concepts of en-
ergy bands and Brillouin zones. The same knowledge can be
directly transferred to the domain of discretely time-periodic
systems. In this case, there are quasienergies, in analogy
to the quasimomentum of Bloch’s theory, Floquet-Brillouin

zones, and so forth [17–20]. In regard to the study of Dirac
cones on the surface of a topological insulator, it has been
experimentally observed [21] and theoretically discussed [22]
that these can be notably altered by applying time-periodic
in-plane fields.

In our work we use a model that was introduced in a series
of seminal papers starting with by Volkov and Pankratov
[23–27] in the 1980s and that is regaining much interest
lately in the context of surface states in three-dimensional
topological insulators [28,29]. We will show that different
orientations of the applied field with respect to the surface,
as well as different polarizations, lead to a variety of situ-
ations. It is worth noticing that it has already been shown,
for example, that an in-plane, circularly polarized field leads
to gap openings [21], a feature that has also been observed
in graphene [22,30–35]. In view of previous studies based
on graphene [36,37], phosphorene [38], α-T3 materials [39],
and three-dimensional topological insulators [40], other in-
plane configurations are expected to preserve the Dirac point,
isotropically or anisotropically widening the Dirac cone. In
this paper, we will confirm these results on the surface of a
topological insulator, and furthermore, we will extend pre-
vious studies with a detailed characterization of (i) Dirac
cones on the topological surface when a time-periodic out-
of-plane field is applied and (ii) the dependence of the main
magnitudes of interest, the Fermi velocity, and the gap on
the field parameters. The aforementioned references focus on
the effective Hamiltonian for the surface states, performing
perturbation theory in the high-frequency limit. In Ref. [41],
the three-dimensional Hamiltonian is mentioned to comment
on the gap openings that occur when considering thin films
of topological insulators, although the interplay between bulk
and surface states is not discussed. In our case, we will
consider the high-frequency limit as well, although we shall
consider throughout the whole paper the full Hamiltonian of
the topological boundary. The usage of the full Hamiltonian

2469-9950/2019/100(7)/075412(7) 075412-1 ©2019 American Physical Society
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Remember

No avoided crossings at FB zone edge along X

Avoided crossings along Y reduce the slope

Surface states unchanged upon changing discretization step and/or system size
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In-plane along X, linear
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In-plane, linear, graphene (bulk)

ADF, EDG, A Gómez-León, G Platero & FDA, PRB 100, 075412 (2019)

See also: SV Syzranov et al., PRB 88, 241112 (2013)
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In-Plane, Circular
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Remember

Avoided crossings at FB edge reduce the slope

Gap opening at Dirac point

Surface states unchanged upon changing discretization step and/or system size
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In-plane, circular
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In-plane, circular, graphene (bulk)

ADF, EDG, A Gómez-León, G Platero & FDA, PRB 100, 075412 (2019)

See also: SV Syzranov et al., PRB 88, 241112 (2013)
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Out-of-plane, Linear
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Out-of-plane, linear

ADF, EDG, A Gómez-León, G Platero & FDA, PRB 100, 075412 (2019)
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Topological Insulator

ADF, EDG, A Gómez-León, G Platero & FDA, PRB 100, 075412 (2019)

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5

v F
(

f)
/v

F
(0
)

f

Dirac
Ny = 5
Ny = 17

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8

v F
(F

)/
v F

(0
)

F/FC

Approximate

Exact

Static fields, similar behaviour

aGNR

ADF, L. Chico, J. W. González & FDA, Sci. Rep. 7, 8058 (2017)

vF (f) = vF (0)

✓
1� 5f2

8

◆

24/30



Out-of-plane, Circular
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Out-of-plane, circular
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• Corroboration of previous studies with surface effective
Hamiltonians

• Anisotropic modulation of Dirac dispersion

• Results applicable to both graphene and TIs, so maybe other Dirac
materials as well
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Floquet engineering of Dirac cones on the surface of a topological insulator

A. Díaz-Fernández ,1 E. Díaz,1 A. Gómez-León,2 G. Platero,2 and F. Domínguez-Adame1

1GISC, Departamento de Física de Materiales, Universidad Complutense, E-28040 Madrid, Spain
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(Received 30 May 2019; published 6 August 2019)

We propose to Floquet engineer Dirac cones at the surface of a three-dimensional topological insulator. We
show that a large tunability of the Fermi velocity can be achieved as a function of the polarization, direction,
and amplitude of the driving field. Using this external control, the Dirac cones in the quasienergy spectrum
may become elliptic or massive, in accordance with experimental evidence. These results help us to understand
the interplay of surface states and external ac driving fields in topological insulators. In our work we use the
full Hamiltonian for the three-dimensional system instead of effective surface Hamiltonians, which are usually
considered in the literature. Our findings show that the Dirac cones in the quasienergy spectrum remain robust
even in the presence of bulk states, and therefore, they validate the usage of effective surface Hamiltonians to
explore the properties of Floquet-driven topological boundaries. Furthermore, our model allows us to introduce
out-of-plane field configurations which cannot be accounted for by effective surface Hamiltonians.

DOI: 10.1103/PhysRevB.100.075412

I. INTRODUCTION

During the last two decades, new Dirac materials such as
topological insulators, graphene, and other carbon-based ma-
terials have emerged. These are foreseen to surpass the reach
of semiconductors. Apart from their robustness to defects,
stemming either from topological protection or symmetry,
their linear dispersion is very much like that of photons,
except for their quantum statistics and their much lower
velocities. Different mechanisms have been put forward to
modify the properties of these cones. For instance, breaking
time-reversal symmetry in graphene leads to the quantum
anomalous Hall effect, a system introduced by Haldane [1]
in the 1980s and experimentally realized very recently using
ultracold atoms [2]. In this case, band gaps open up in
the otherwise gapless spectrum. and the system becomes a
topological insulator that can host chiral edge states. Other
alternatives put their emphasis towards modifying the Fermi
velocity [3–8], a crucial parameter in quantum transport [9].
As an example, applying static, uniform electric, and mag-
netic fields to three-dimensional topological insulators such as
Bi2Se3 widens the cone elliptically, so that the Fermi velocity
is reduced in an anisotropic fashion [10–13].

Remarkably, however, the use of periodic drivings is dra-
matically expanding the possibilities in these Dirac materials.
Indeed, examples are now found not only in solid-state sys-
tems [14] but also in photonics [15] or even acoustics [16].
All these make use of what is known as Floquet’s theorem.
Although the words are now mainstream in the scientific
community, Floquet’s theorem is most well known in its real-
space version, that is, Bloch’s theorem. Indeed, the discrete
periodicity of a lattice in real space leads to the concepts of en-
ergy bands and Brillouin zones. The same knowledge can be
directly transferred to the domain of discretely time-periodic
systems. In this case, there are quasienergies, in analogy
to the quasimomentum of Bloch’s theory, Floquet-Brillouin

zones, and so forth [17–20]. In regard to the study of Dirac
cones on the surface of a topological insulator, it has been
experimentally observed [21] and theoretically discussed [22]
that these can be notably altered by applying time-periodic
in-plane fields.

In our work we use a model that was introduced in a series
of seminal papers starting with by Volkov and Pankratov
[23–27] in the 1980s and that is regaining much interest
lately in the context of surface states in three-dimensional
topological insulators [28,29]. We will show that different
orientations of the applied field with respect to the surface,
as well as different polarizations, lead to a variety of situ-
ations. It is worth noticing that it has already been shown,
for example, that an in-plane, circularly polarized field leads
to gap openings [21], a feature that has also been observed
in graphene [22,30–35]. In view of previous studies based
on graphene [36,37], phosphorene [38], α-T3 materials [39],
and three-dimensional topological insulators [40], other in-
plane configurations are expected to preserve the Dirac point,
isotropically or anisotropically widening the Dirac cone. In
this paper, we will confirm these results on the surface of a
topological insulator, and furthermore, we will extend pre-
vious studies with a detailed characterization of (i) Dirac
cones on the topological surface when a time-periodic out-
of-plane field is applied and (ii) the dependence of the main
magnitudes of interest, the Fermi velocity, and the gap on
the field parameters. The aforementioned references focus on
the effective Hamiltonian for the surface states, performing
perturbation theory in the high-frequency limit. In Ref. [41],
the three-dimensional Hamiltonian is mentioned to comment
on the gap openings that occur when considering thin films
of topological insulators, although the interplay between bulk
and surface states is not discussed. In our case, we will
consider the high-frequency limit as well, although we shall
consider throughout the whole paper the full Hamiltonian of
the topological boundary. The usage of the full Hamiltonian

2469-9950/2019/100(7)/075412(7) 075412-1 ©2019 American Physical Society


