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“The theoretical oriented scientist cannot be envied, because
nature, i.e. the experiment, is a relentless and not very 
friendly judge of his work. In the best case scenario it only 
says “maybe” to a theory, but never “yes” and in most cases 
“no”. If an experiment agrees with theory it means “perhaps”
for the latter. If it does not agree it means “no”. Almost any 
theory will experience a “no” at one point in time - most 
theories very soon after they have been developed.”

Albert Einstein, 
Theoretical Remark on the Superconductivity of Metals



Iron-based superconductors

• Rotter et al. 
arXiv: PRL (2008)

• Ni et al Phys. Rev. B 2008
(single xtals)

• Kamihara et al
JACS (2008)
•Ren et al
Chin. Phys. Lett. 
(2008)

Wang et al 
Sol. St. Comm. 2008 

Tc=18KTc=38KTc=28K
(55K for Sm)

Tc=8K

Hsu et al
PNAS 2008

No arsenic !

Recent reviews: Paglione & Greene Nat Phys 2010; Johnston Adv. Phys.  2010



Electronic structure calculations
LaFePO Lebegue 2007 (Tc=6K) LaFAs0 Cao et al2008 (Tc=26K)

Band structures for 2 materials nearly identical!
Hole pocket near Γ, electron pocket near M

2D!
Kotliar et al, Cao et al: correlations can be important



Multiorbital physics

DOS near Fermi due almost entirely to 5 Fe d-states

Complications: calculations will be harder

Novelty: surprising new aspects of multiorbital/
multiband physics
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Nematic behavior

orthorhombic state displays 
strong anisotropies that 

cannot be attributed to the 
lattice distortion only 

Chu et al, Science (2010)
Tanatar et al, PRB (2010)

Ba122 resistivity

~0.3% change in a,b at Ts in Ba-122

TsTN

FeSe vortices near twin bdry
Watashige et al, Science (2010)



Superconductivity: e-ph interaction is too weak

Singh & Du PRL 2008

Mazin et al, PRL 2008, see also Mu et al CPL (2008),
Boeri et al. PRL 2008

Phonon spectrum, density of states



2 paradigms for superconductivity
according to how pairs choose to avoid Coulomb interaction

“conventional” :    isotropic s-wave pair wave fctn, interaction retarded in time

“unconventional”:  anisotropic or sign-changing pair wave fctn, 

Overall effective interaction attractive

Overall effective interaction repulsive



Effective singlet interaction from spin 
fluctuations (Berk-Schrieffer 1966)

Generate attractive interaction from 
repulsion at large q on a lattice –
e.g., d-wave in cuprates

Spin fluctuation theories of pairing 

Vs

χ0

χ0

χ0U
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s± pairing in Fe-pnictides Mazin et al PRL 2008 
electron-hole pocket pair scattering dominates

- nesting peaks interaction V(q) at (π,0) in 1-Fe zone
- interaction is ~ constant over small pockets
- therefore sign-changing s+/- state solves gap eqn

α β

also: 

Kuroki et al 2008
Seo et al. 2008
Chubukov et al 2008

χ(q)Orbital physics?

Graser et al 2009
Zhang et al 2009
Sknepnek et al 2009

Anisotropy



PH, Korshunov and Mazin Rep. Prog. Phys. 2011
PH, Comptes Rendus Physique 2016

nodes

Full gap

nodes?

anis.

Fe-pnictides: evolution of gap with doping from spin fluct. thy



SC state: experimental “lack of universality”
e.g., penetration depth experiments

Prozorov, 2011  
Co-doped Ba122 Tc=25K

Hicks et al 2008  
LaFePO Tc=6K
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SC gap symmetry and structure

A1g B1g

∆(k) = “energy gap”   or   “order parameter”   or  “pair wave function”



What’s different between Fe-pnictides 
and Fe-chalcogenides?

• Stronger electronic 
correlations  Basov, Kotliar…

• Stronger spin-orbit 
coupling Borisenko Nat Phys 2015

• “Intrinsic” electron doping, 
at least in some systems 
(not FeSe bulk)



FeSe: low-Tc building block for high-Tc Fe-based SC

FeSe: nematic order without LR 
magnetic order, 8K superconductor



Possible topological ultranodal state in FeSe,S



PNAS 115, 1227 (2018) 



Thermal conductivity
Sato et al, PNAS 115, 1227 (2018) 



Science Advances 4, eaar6419 (2018): 
SC state with nonzero zero-bias DOS!

Conclusion from experiments: gap is more anisotropic outside nematic phase!

NOT due to disorder in nodal SC state
Q. Osc.: Coldea et al npj-Quant. Mat. 2019



What is happening in SC at high S contents?
Ultra-high energy resolution spectroscopy below 90 mK

x = 0.17 just at NEP x = 0.22 tetragonal

cf. T. Machida, Y. Kohsaka and T. Hanaguri, RSI 89, 093707 (2018).
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Large residual DOS at EF may be intrinsic

Tetra. Fe(Se,S) is clean…
- large RRR
- quantum oscillations observed
- vortex bound state

Thanks to Tetsuo Hanaguri, RIKEN!



Gap nodal surfaces in unconventional superconductors



Another possibility? 

Ingredients: 
• even-parity nodal superconducting state
• spontaneous time reversal symmetry breaking (TRSB) 
• effective j=3/2 fermions

PRL 118, 127001 (2017)



Other examples of Bogoliubov Fermi surfaces 

Evidence for possible nonunitary triplet pairing in centrosymmetric system

d-wave SC in Zeeman field

Wang-Vafek PRB 2013

dSC with loop current order

UTe2

Ran et al arXiv 1811.1180; 

Berg et al  PRL 2008

dSC with loop current order

Metz et al 1908.01069



Examples of BFS

1. d-wave SC in Zeeman field

π and σ are Pauli matrices in Nambu, spin respectively
C,P preserved independently  

2. Loop currents coexisting with d-wave order

breaks C,P but preserves CP 

2, invZ⇒ ±

( ) (sin sin sin( ))x y y xJ J k k k k= − + −k



0 y 0 0( ) ( )  +  + i y y zH i i iτ σ τ σ δ τ σ∆ = ∆ ⊗ ∆ ⊗ ⊗k k

spin space

bandspace

σ

τ





Intraband
spin singlet 

Interband  
spin triplet 

Interband  
spin triplet

TRSB

SOC

arXiv: 1903.00481, 
Nat Comm 2020

H is CP-symmetric matrix ⇒ Det=Pf2

Topological transition to an 
ultranodal SC state when 
Pf changes sign!             

Agterberg 
et al.



Ansatz for intraband gap evolution in FeSe(1-x)Sx

Conventional  ultranodal Z2 transition 

Anisotropic components held fixed, 
isotropic ones decreasd with x
(scenario proposed by Tokyo-Kyoto
collaboration)



Sp. heat: theory

expt. (Hanaguri et al 2019)

STM: theory

experiment (Sato et al 2018) 

Comparison with experiment on FeSe(1-x)Sx
Setty et al arXiv: 1903.00481



Is there a “smoking gun” for the ultranodal state?

Consequences of time reversal symmetry breaking by “internal magnetic field”

Nonunitary superconducting state  ∆↑↑ ≠∆ ↓↓



• Do we know examples where this 
happens spontaneously in zero field?

• Do we understand physics that could 
cause this?

NO



Out of plane field

In-plane field: only h2 term ⇒ only shift of transition



Bogoliubov Fermi surfaces shrink/grow with out-of-plane field

Prediction (after subtraction of Volovik term): 
C(T→0)/T depends on direction of field



Stability of ultranodal state

Tendency to negative Meissner effect, 
as in odd-frequency pairing, but:

a) Large stable topological region
b) Stability enhanced by intraband 

gap anisotropy 

Model with isotropic intra, interband gaps 
∆i,δ



Conclusions
• Novel even parity triplet interband pair states may be realized 

in presence of spin orbit coupling 

• Combination TRSB interband triplet, anisotropic intraband 
singlet pairing can lead to “ultranodal” state, explain nonzero 
residual DOS in FeSe1-xSx.   Bogoliubov Fermi surface is 
topological, robust against perturbations that preserve 
particle-hole & inversion symmetries

• Microscopic mechanism for nonunitary pairing missing.  
Needed: theory treating spin-fluctuation pair states & 
exotic (interband) states on equal footing!

• Einstein: “perhaps”
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