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Thermalization in Closed Quantum Systems

I’'m interested in the general problem of thermalization in a closed
quantum system. That is, | imagine pumping energy into a system:
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and then ask what is its subsequent long time behavior. And when

| say the system is closed, | am imagining that it is coming to
equilibrium via interactions with an outside world (there is no bath).
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Long Time Behaviour

Observable (O(t))

t=0, point ) N )
at Wr?ich Equilibrated

energy is value of (O(t))
iInput
into the _
system, time, t
l.e. a
quantum
quench

But what does equilibrated mean”? Can we use
notions from standard statistical mechanics to
describe this late time value?
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Long Time Behaviour and Eigenstate Thermalization
Hypothesis

The answer is yes. We can relate the long time behaviour
to the microcanonical ensemble via a conjecture known as
the Eigenstate Thermalization Hypothesis.

This hypothesis, put forth by Mark Srednicki and David
Deutsch, postulates that physical observables, (D , when
evaluated on an eigenstate of the system’s Hamiltonian of

energy E, |E), —

(EO|E)

IS a smooth function of E.

— T




Exceptions to the Eigenstate Thermalization Hypothesis

But there are exceptions to the eigenstate thermalization
hypothesis. And this is really what my talk is about:

There is one exception that | won't be talking about:

The system has a set of additional conserved quantities
beyond energy, i.e. the system is integrable.

Now this can be a very interesting subject in and of itself.
But | am going to be interested in the case where

(EO|E)

IS not a smooth function. States that violate this hypothesis
are known as rare states.
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Periodic Driving: Other Exceptions to ETH (?)

ETH has wider consequences than governing the long time behaviour
after a quantum quench. It also has consequences for systems under

periodic driving (with period, T).

We know from the Floquet theorem that at stroboscopic times, t=nT, the
time evolution operator can be written in terms of a Floquet Hamiltonian,

He: .
Ut =nT) =emHr

If the spectrum of Hr satisfies ETH, we (generically) expect the system to
heat to infinite temperature (D'Alessio and Rigol — PRX 4, 041048).

We are going to consider a possible exception to this rule in the periodic
driving of a 1D Bose gas.
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Outline

1. Eigenstate Thermalization Hypothesis (ETH) and Rare States
2. Rare States in 1D Quantum Ising

- Bound states in 1D quantum Ising: Anomalous
Thermalization

- Bound states as rare states

3. Dynamical Localization in Periodically Driven 1D Bose Gases
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Eigenstate Thermalization Hypothesis
and Rare States
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Eigenstate Thermalization Hypothesis

We imagine our system is initially in a state 1) = ) _ caln) where the |n)
are eigenstates of a Hamiltonian H with energies distributed narrowly
about some energy E. ¢ |2

b,

E
Suppose further that we have an observable (D and ask what its long

time value is, i.e.

t—o0 T — 00 T

O = lim (¢ (t)|O)(t)) = lim —/ dtz {En=Em)tex 0 (n|O|m) = Z\cn\ (n|O|n)

We can now ask the question whether () is thermal, i.e. whether it is
equal to its microcanonical average O,,,.. :

N’ no of states
Z (n|O|n) of states in energy

E—A<E,<E+A window
E-A<E, < E+A

O=0,.

1
N



Eigenstate Thermalization Hypothesis

ETH asserts then that

(n|O|n) = A+ small corrections

for all n in the microcanonical energy window E-A < E,, < E+A.

If the hypothesis holds, we automatically have thermalization:
1 1
Ome = 57 > (n|Oln) = > A=A

FE—-A<FE,<E+A E—-A<FE,<E+A
O =3 leal*(n|On) =D e’ A= A
n n

But do we in fact have <n!(9]n> — A for all states?
Sl e



Eigenstate Thermalization Hypothesis

What should the expectation values (EVs) (n|O|n) look like in a
model where ETH holds?

1D quantum Ising: @ | =

0.1r

H =Y Joo},, + 9o} + ho]

J=1, g=0.9045, h=0.8090

Kim, lkeda, Huse, PRE 90, 052105 (2014) 01 {{ ik

-0.2

-0.2 -0.1 0.1 0.2 0.3

0
En/L

For this choice of parameters, the EVs conform to
ETH predictions: as the system size L gets larger, the deviation
of EVs from their mean at a given energy shrinks.
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Rare States

But what would happen if there was an outlier state, a state whose EV did
not approach the mean with increasing system size, i.e.

(a) —L=15

state

-0.2

-0.2 -0.1 0 0.1 0.2 0.3
En/L

Such a state is know as a “rare” state. If it were to exist, it would
represent a violation of “strong” ETH. It is possible for rare states to exist
but still have

O:Omc

In this case one says that “weak” ETH still is valid. BROOKHRVEN
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Examples of Rare States:
Quantum Scars in Rydberg Atom Chains

In Rydberg atom platforms, there appear, apparently, ergodicity breaking
states, so called quantum scars:

doi:10.1028/ nature24622

Probing many-body dynamics on a
51-atom quantum simulator

Hannes Bernien', Sylvain Schwartz'?, Alexander Keesling!, Harry Levine', Ahmed Omran', Hannes Pichler', Soonwon Chof',
Alexander S. Zibrov!, Manuel Endres*, Markus Greiner®, Viadan Vuleti¢? & Mikhail D. Lukin®

The Rydberg atom (two-level) Hamiltonian under a laser drive is given by:

H= EL: (QX. _AQ_) +2L:V_ 00 X; is Pauli matrix g, on site j
j=1 27 i<j ! ! Q] — (1 + Z])/Z
We are interested in the limit that V > . In this limit our Hamiltonian
becomes very simple:

L
H:ZPj—lXij+1 P; = (1_Zj)/2
j=1
It has an effective constraint that no two excitations (spin ups) can be
side by side.



Examples of Rare States:
Quantum Scars in Rydberg Atom Chains

This model appears to support rare states (Turner, Michailidis, Abanin,
Serbyn, Papic, Nat. Phys. 14, 745 (2018)):

: (a)—0.3 - X X X x rare
Expectation values of operator SR T states
J
Canonical
—I10 (I) IIO
E
The rare states appear to be CDW states, i.e. |Zg) =|...¢0...00...)

k



Bound States in 1D Quantum Ising
in a Longitudinal Field
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Linearly confined bound states
H = —JZ (070711 + gof + ho?)

TTT

TTT TT

h=0 T TT domain walls l
TTTTTT domain walls lTTTTT llllTT
oy i

ordered ground state excited state with two domain walls with h>0, a distance
d between domain walls
costs hd in energy



Consequences of Bound States in
1D Quantum Ising
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Entanglement growth and correlation propagation post-quench

How do entanglement and correlations spread in a system after a
gquantum quench?

There are two rules: (Cardy+Calabrese J. Stat. Mech, 2005; PRL 2006)

Rule 1, Horizon/lightcone effect: Two-point functions B -2t~ -2t~ B

(O(21)O(22))
become stationary for times

t > |x1 — 2| /20

Rule 2, Linear growth in time of Sge: For an interval
A of length I, Sge reaches a saturation after I/2v to a
value of ~l/.

quasi-particle propagation
post-quench



Entanglement entropy growth and propagation post-quench

This basic intuition breaks down in the absence of simple freely propagating
quasi-particles, i.e. confined bound states such as found in the quantum Ising
model:

model in a
longitudinal field

H=-J Z (O-’L'Za-z'z—kl + gO';E + ho'f) quantum Ising
1

The domain walls created
by the quench in the 1D
quantum Ising model do
not fly apart because of

the confining longitudinal
field. And so the growth of
entanglement entropy is not
linear in time.

time

Kormos, Collura, Takacs, Calabrese:

Nature Physics (2016)
BROOKHRVEN
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Bound states and anomalous post-quench behaviour

Consider a quench:
H =13 (07071 +ho})

h=0 h=0.025 h=0.05

t=0

H=-J]) (0707, +0.250] + ho})

40

40 40
‘ 0.10
20 20 20 10.08
3 8 3
§ 0 § 0 § 0 0.06
2 2 2 0.04
. © © ©
Light cone ~20 ~20 ‘ ~20
- _ _ 0
p|OtS for 4% 102030405060 % 102030405060 ~*% 1020 30 40 50 60
<O_Z O_z > time time time
19m+1/c h=0.1 h=0.2 h=0.4 Kormos
40 40 40 oo et al. (2016)
20 20 20 To.os
3 8 3
§ 0 § 0 § 0 o
2 2 N 0.04
© © ©
-20 -20 -20 0.02
% 102030405060 "% 102030405060 *% 1020 30 40 50 60
time time time

Bound states lead to anomalous thermalization. But are they rare?



Studying Bound States as Rare States via the
Truncated Spectrum Approach
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Truncated Spectrum Approach (TSA)

This approach is an approach for treating continuum theories. So we are not
going to treat

H = —JZ (afaf+1 + go; + haf)

but its continuum version instead, a theory of a massive relativistic Majorana
fermion

d L B B m~ (1 —g)J
H = / S—i[iv(w&pw — Y0,¢) — 2imyyp + ho)] VU9

h~ 7/8

Here there is an important question of whether a lattice model and a continuum
model should see the same thermalization patterns.

TSA: Methodology works by treating the field theory in finite volume and finite
UV cutoff. Effects of the UV cutoff are ameliorated with RG strategies.

Review: A. James, RMK, P. Lecheminant, N. Robinson, A. Tsvelik,
Reports in Progress in Physics 81 (2018)



Linearly confined bound states as rare states

Eigenstate Expectation Values for Ising

dx .

HlD Quantum Ising __ / 8_7_‘_[2/0(?;81‘@; . waxw> . 2zm@5¢ + hO’]

T T ‘ T T T T ‘ T T T T T T T T T T T T T T T T T T T T Al T T T
0 - o EEV
| MCE

There exists a branch of states

02 - that do not match the

Rl Bound states ~ ,© <8 microcanonical ensemble,
< 00 il l.e. rare states.
—0.8 +
_ We know these states are bound
1ol Co 0 0 o states because we can solve
. e.. ... Microcanonical average a Bethe-Salpeter equation that

-0.15 —0.1 —005 0 005 01 015 0.2 gives us the Wavefunction and
Energy Density E/R .
energies of the bound states.

Does this survive into the thermodynamic limit? Ask me if

CUrious. BROOKHEVEN
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Can Rare States Control Post-Quench Thermalization

Or is their existence consistent with weak ETH?

If we initialize the system in a rare state for one value of h and then
guench to a different value of, we find the expectation value does not
equilibriate to the microcanonical value.

| \rare state
0 4 B T ‘ Q/ T ‘ T ‘ T ‘ T ]
: : : ‘ n =10 n=333 — n=502
Time evolution following n = 185 n = 352
0.2 |- i

a quench from h=0.1

to h=0.2. ol
We choose as initial = 02
conditions different 5 o4 T Wy A Wy A N i
eigenstates of the h=0.1 o
Hamiltonian. State 100 06|\ .- ..

_ microcanonical
here is a rare state. window

—0.8

—1 ‘ | ‘ | ‘ | ‘ |

0 20 40 60 80 100
Chebyshev methods for TSA: T. Rakovszky, M.
Mestyan, M. Collura, M. Kormos, and G. Takacs, Nucl.
Phys. B 911, 805 (2016)

Time mt



Are the Existence of Rare States a Feature of the Continuum?

Answer: No (probably). 30 [

z2=z=]

They seem to appear in the lattice =l

model as well: 20 -

fDMRG computation on a 40-site B
lattice with first 200 states plotted.

5 ((0Fn — (oF)0)

10 |-

OBCs are used — here bound states :
are boundary bound states Y S I

. I . . I f ‘ 0 0.5 1 ‘1.5 2 2.5 3 3.5
involving a single fermion. Enorey E — Eo(N)

60

50 F

— 40 |

O
As a comparison, our continuum 30
results. =

< 20 -

Energy F — Ey(R)



Dynamical Many-body Localization
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Basic Setup

1D Bose Gas Under a Periodic Drive:

Lieb-Liniger model Periodic kicking term

H = / dx[——w (2)0*6(2) + ol (@) (0)(a)p(z) + V coslaa)! (@)o(o) 30 (¢~ n7)]

Primary Question: How does the system’s energy evolve in
time? Does it flow off to infinity or remain finite?

Challenge: We need to study the time evolution to very long
times.
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Single Particle Case

This same question has been asked in the single particle case: a quantum
kicked rotor motor:

h? =

Here by mapping the system onto a 1D disordered Anderson model, Fishman,
Grempel, and Prange (PRL 49, 509 (1982)) showed that there is energy

localization. This was later confirmed in experiments by Mark Raizen’s group:

They saw ener : :
v % This means we will

..t saturation after 10 _ _
Dl [ | kicks (short quantum see |localization for

ot /s /\ | break time). c=0 and ¢c=00.

%21 Moore et al

F[G4 E (( /25/())/2 fur;ction of‘timeA The PRL 75, 4598 (1 995)
BROOKHAVEN
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Generalized Hydrodynamics

Generalized hydrodynamics (GHD) is a coarse grained description of a
quantum integrable system where it is assumed that a local equilibrium exists
that is described not only by energy conservation but conservation of all
conserved quantities of the integrable model.

The GHD equation for the gas in the presence of an external force is:

0.V (x,t)
m
Doyon, Yoshimura, SciPost Phys. 2, 014 (2017)

on(z,t, \) + Oz (Vers(x,t, \)n(z,t, ) = on(x,t, \)

Here n(x,t, A)is the density of excitations with quasi-momentum A.

It is @ much easier equation to solve than the fully quantum dynamics, and it
gives one a chance to propagate the system to late times and work with large
system sizes.



Results

1200

1000 =

SO0 -

600 =
m“r
200

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 200 150 100 o) 0 all 100 150 200
{ x 107 A and x20,p

10

Distribution vanances

var[n( A, t)| — var[n{A,0))

var|it(p, t)) x 1077

'
[

Logarithmic momentum densities
e

At large (but finite c), we see that the distribution (blue) of quasi-
momenta localize. However the Fourier transform of the spatial density
(orange) does not localize within the times that we are able to simulate.

The wave vector g and V chosen so that many-body effects are
maximized and the chance of localization due to effects present in the
classical limit (the Chirikov standard map) are minimized.

We see (at least) that dynamical localization occurs over very long time
scales.



Summary

1. We have argued that there are “rare” states in 1D quantum Ising.

- Such rare states have been recently discovered in kinetically
constrained models where they have been termed quantum scars.

- They are also present in 2D quantum Ising. Seeing them required

combining TSA and MPS approaches (ask me if curious).

2. We have demonstrated that energy localization in a periodically driven
Lieb-Liniger model occurs at least for large ¢ and long times.
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