

Science and Technology Facilities Council

Role of matrix elements in observation of valley-selective linear dichroism in bilayer MoS₂

Charlotte Sanders

Phys. Rev. B 100 (2019) 241406(R); Phys. Rev. B 100 (2019) 235423

Image © STFC Alan Ford

Acknowledgments

Arhus University, Villum Centre for Dirac Materials

Klara Volckaert, Deepnaravan Biswas, Federico Andreatta, Paulina Majchrzak, Sanjoy K. Mahatha, Marco Bianchi, Nicola Lanata, Jill A. Miwa, Philip Hofmann, Søren Ulstrup

Nordita Centre for Quantum Materials

Habib Rostami, Alexander V. Balatsky

St. Andrews University

Igor Marković, Phil D. C. King

Central Laser Facility, Artemis Lab

Cephise Cacho, Richard T. Chapman, Adam Wyatt, Emma Springate

Elettra Sincrotrone, SuperESCA

Daniel Lizzit, Luca Bignardi, Silvano Lizzit

Elettra Sincrotrone Trieste

MoS₂ trigonal prismatic structure

Мо

S

van-der-

Waals

layers

bonded

0

a = 3.15 Å c = 12.3 Å

3

MoS₂ trigonal prismatic structure

Bulk dispersion

Phys. Rev. B 91 (2015) 155436

Single-layer dispersion


```
Phys. Rev. B 91 (2015) 155436
```


Single-layer dispersion

Phys. Rev. B 91 (2015) 155436

7

Single-layer: circular dichroism

Phys. Rev. B 91 (2015) 155436

Γ

K/K'

k_{II}

Single-layer circular dichroism

9

Phys. Rev. B 91 (2015) 155436

Bilayer dispersion

Phys. Rev. B 91 (2015) 155436

Bilayer dispersion

- Inversion symmetry restored
- Spin polarization lost
- Circular dichroism lost

Bilayer dispersion

- Inversion symmetry restored
- Spin polarization lost
- Circular dichroism lost

Sample preparation & characterization

Samples: MoS₂/Ag(111)

- Mo evaporation in H₂S atmosphere
- Controlled annealing
- Ultra-high-vacuum base pressure

Sample preparation & characterization

Samples: MoS₂/Ag(111)

- Mo evaporation in H₂S atmosphere
- Controlled annealing
- Ultra-high-vacuum base pressure

Preliminary characterization

- X-ray photoelectron diffraction
- Angle-resolved photoemission spectroscopy (ARPES)

Pump-probe ARPES

- Artemis User Facility (U.K. Central Laser Facility)
- Tunable infrared pump
- Extreme ultraviolet probe generated by high-harmonic generation

Science and Technology Facilities Council Probe: hv=32.5eV, p-polarized Pump: 2 eV, controllable polarization

Pump polarization

Naïve expectation

- Bilayer is inversion symmetric
- K & K' equivalent
- No dichroism expected

Pump-probe depends on more than one process

- Excitation from the excited state to the final state
- Interband transition

Experimental results

Unexpected dichroism

Fitting of observed dichroism

k p Hamiltonian:

- Bilayer case calculated from simple 4band model
 - 1 valence & 1 conduction band, top & bottom layers
 - Layer hybridization taken into account
- *q*: wave vector measured from K
 - φ: azimuthal angle associated with q
- $\tau_z, s_z = +/-1$: valley & spin indices

Hamiltonian for single-layer MoS₂

Theory picture
Pump
polarization Bilayer Hamiltonian
Matrix element:
Interband transition
$$M_{cv}(\vec{q}, \theta) = \langle \psi_c(\vec{q}) | \hat{e}(\theta) \cdot \nabla_{\vec{q}}(\hat{H}_{BL}) \psi_v(\vec{q}) \rangle$$

yields the excited state population
 $f^{exc}(\vec{q}, \theta) \propto 1 + f_{linear}(\vec{q})\cos(2\theta) + f_{circular}(\vec{q})\sin(2\theta)$

flinear and fcircular: prefactors describing the relative weight of linear and circular dichroic terms; Science and Technology Facilities Council

$$M_{cv}(\overrightarrow{q},\theta) = \langle \psi_c(\overrightarrow{q}) \, | \, \hat{\epsilon}(\theta) \cdot \nabla_{\overrightarrow{q}} \hat{H}_{BL} \, | \, \psi_v(\overrightarrow{q}) \rangle$$

$$f^{exc}(\overrightarrow{q},\theta) \propto 1 + f_{linear}(\overrightarrow{q})\cos(2\theta) + f_{circular}(\overrightarrow{q})\sin(2\theta)$$

$$f_{linear}(q) \approx 2 \frac{(t_1^2 - 2(\hbar\omega_0)E_{gap})}{E_{gap}^2} q^2 \cos(2\phi)$$

 f_{linear} and $f_{circular}$: prefactors describing the relative weight of linear and circular dichroic terms t_1 : intralayer hopping parameter

Sine dependence

Sine dependence

Inversion-symmetry-broken, circular dichroism

Sin term associated with various symmetry-breaking, such as:

- Presence of single-layer regions on sample
- Substrate effects
- Layer-dependent probe sensitivity
- Possible layer pseudospin

Cos term:

- Related to matrix element of pumped excitation
 - Linear dichroism not exclusive to this material system
- Arises from intralayer rather than interlayer hopping
- Previously overlooked because of the circular dichroism in single-layer MoS₂

Cosine dependence

Phys. Rev. B 100 (2019) 241406(R); Phys. Rev. B 100 (2019) 235423

Γ

Science and Technology Facilities Council

Κ

Science and Technology Facilities Council

Than Kyou

Phys. Rev. B 100 (2019) 241406(R); Phys. Rev. B 100 (2019) 235423

@STFC_matters

Science and Technology Facilities Council